
International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 305

Industrial Automation Debug Message Display

Over Modbus RTU Using C#

Sudip Chakraborty 1 & P. S. Aithal 2
1 D.Sc. Researcher, Institute of Computer Science and Information Sciences, Srinivas

University, Mangalore-575 001, India,

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2 Vice Chancellor, Srinivas University, Mangalore, India,

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

Area/Section: Computer Science.

Type of the Paper: Experimental Research.

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed in: OpenAIRE.

DOI: https://doi.org/10.5281/zenodo.8139709

Google Scholar Citation: IJMTS

International Journal of Management, Technology, and Social Sciences (IJMTS)

A Refereed International Journal of Srinivas University, India.

CrossRef DOI: https://doi.org/10.47992/IJMTS.2581.6012.0285

Received on: 20/06/2023

Published on: 30/06/2023

© With Authors.

This work is licensed under a Creative Commons Attribution-Non-Commercial 4.0

International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by Srinivas Publications (S.P.),

India are the views and opinions of their respective authors and are not the views or opinions

of the SP. The SP disclaims of any harm or loss caused due to the published content to any

party.

How to Cite this Paper:

Chakraborty, S., & Aithal, P. S. (2023). Industrial Automation Debug Message Display Over

Modbus RTU Using C#. International Journal of Management, Technology, and Social

Sciences (IJMTS), 8(2), 305-313. DOI: https://doi.org/10.5281/zenodo.8139709

http://www.srinivaspublication.com/
mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com
https://doi.org/10.5281/zenodo.8139709
https://scholar.google.com/citations?user=bphF0BQAAAAJ
https://search.crossref.org/?q=10.47992%2FIJMTS.2581.6012.0285&from_ui=yes
https://doi.org/10.5281/zenodo.8139709

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 306

Industrial Automation Debug Message Display

Over Modbus RTU Using C#

Sudip Chakraborty 1 & P. S. Aithal 2
1 D.Sc. Researcher, Institute of Computer Science and Information Sciences, Srinivas

University, Mangalore-575 001, India,

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2 Vice Chancellor, Srinivas University, Mangalore, India,

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

ABSTRACT

Purpose: To debug any device needs to display debug message. Seeing the message, we can

detect what is the issue in our program. The are several popular debug tools available. The

popular is JTAG. This debug interface is not available to debug inside all embedded systems.

Instead of it, the Researcher uses a serial debug terminal. However, it has several drawbacks.

Its wire length is generally within the table. The message is displayed only in one terminal.

Sometimes the connected system is damaged due to high voltage spike injection. Here we

demonstrate a procedure to eliminate all the above drawbacks. Instead of a direct serial display,

we recommend using a modified serial debugger like Modbus hooked debug display. It is safe,

can display multiple arrays simultaneously using broadcast messages, and can transmit long-

range data. We developed a terminal program in C#. We provide a sample Embedded side test

program. The complete project code is available to download.

Design/Methodology/Approach: First, we create a Graphical user interface using C#

language. To display the message, we use the “Listbox” control. We added a timer control to

fetch the data availability. The timer interval is one millisecond by default. Within this time, it

checks whether any data is reached. When the message/data arrives, it starts parsing. At first,

it reads the Device ID. If the device ID matches, then it checks the CRC. If CRC is valid, it

extracts the data from the received packets and displays it inside the list box.

Findings/Result: Various tools are needed to resolve the issue when we debug the system. We

connect the debugger and try to uncover the problem. Sometimes we do less concentrate on the

hardware connection. So, there are chances of a wrong connection. Further, it can lead to the

cause for damage to our PC/laptop. Here is our approach to minimize the damage which is

unintentionally created. We isolate the PC/Laptop from the debugging system. It is safe and

reliable. The researchers, new to embedded system debugging, can get information on where

they can safely debug by creating an isolated environment.

Originality/Value: This work provides some efficient view to debug message display using

Modbus. It has several advantages over a simple serial debug interface. It can be long-range.

The same message can be displayed in multiple terminals for team debugs season. The

Researcher working with various team members on the same project can be viewed effectively.

The new Researcher can be found some good reference information from this work.

Paper Type: Experimental-based Research.

Keywords: Modbus Debugger, Modbus Debug terminal, Debug terminal over Modbus.

1. INTRODUCTION :

The Debug is an essential part of any electronics product life cycle. We mainly debug at product

development time. For microcontroller-based products, we generally debug with JTAG. Furthermore,

we use the serial debugger for Arduino or where JTAG is unavailable. However, using a serial debugger,

a couple of issues are there. Usually, serial debuggers are connected directly to hardware. One side is

connected to a USB port, and the other is associated with a controller serial port. The connected laptop

or system might be burnt instantly if the controller board is short with high-voltage, like 230V AC.

According to our experience, some cases have already happened where we could easily protect our

http://www.srinivaspublication.com/
mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 307

laptop or PC using some procedure. Here is the cost incurred for the PC/ or system unit, and if we are

not backed up properly, all our hard work might be irrecoverable. Another issue we face for serial

debuggers is that the wire might not be lengthy. Sometimes we need to display the debug message from

a remote place, creating a long wire, and the signal gets noisy. The third one is multiple displays. Let

us say we are working with the team. The debug message needs to display on multiple terminals.

Simply, it is not possible to display the debug message. We can use a modified serial debugger and

RS485 based debug message displays for those drawbacks.

Hazard Injection: To eliminate this type of issue, we use isolated RS485. Several vendors, like Texas

Instruments, are manufacturing the isolated RS485 chip. It has galvanic isolation. There is no physical

wired connection between the input and output. Sometimes we isolate signal flow but ground pin we

still made common. It is also can create issues. So we need complete isolation for full protection. So

using this chip, we can protect ourselves entirely using high voltage hazards.

Long Distance: RS485 instead of RS232 can be achieved at a maximum distance of 1200 meters. It

has some facilities. This signal can be directly fed to a datalogger and remote monitoring purposes.

Multicast: Rs485 signal multicast in nature. Our debug message display can be viewed by at least 32

nodes that can be connected at a time. That means 32 nodes can be seen in the debug message. If we

want to activate multiple devices triggering from the broadcast signal, we can use this type of signal.

2. RELATED WORKS :

Bingol O. et al. paper focuses on implementing a web-based intelligent home automation system

controlled by a programmable logic controller (PLC). It highlights the advantages of web-based control

in home automation [1]. Yunzhou, Z. et al. present a design for a training and experimental platform

that utilizes multi-protocol communication [2]. Bajer, M., in their paper, explores the dataflow concept

in modern industrial automation systems [3]. Pfrang S. et al. emphasize advancing protocol fuzzing

techniques for industrial automation and control systems 4]. Wang, H. et. al. introduces the development

of a three-dimensional virtual programmable logic controller (PLC) experiment model based on

Unity3D [5]. Familiar, B., in their paper, focuses on sensors, devices, and gateways in IoT and real-

time business applications [6]. Mathias, C. M. focuses on the design of IoT security, specifically in the

context of smart grids. It analyzes software vulnerabilities that pose security risks in innovative grid

systems and proposes mitigation measures [7]. Del Carmen Curras-Francos et. al., in their paper,

focuses on the cooperative development of an Arduino-compatible building automation system for

practical teaching purposes [8]. Müller, M. introduces an intelligent assistance system for controlling

wind-assisted ship propulsion systems. It presents the system's design and implementation, combining

sensor data, control algorithms, and decision-making mechanisms to optimize performance [9]. Aguilar

et. al. focuses on creating general-purpose automation software based on the Raspberry Pi platform

[10]. Overall, the literature study provides various research papers covering intelligent home

automation, industrial communication protocols, virtual experimentation platforms, IoT security,

building automation, intelligent assistance systems, and general-purpose automation software. These

papers contribute to the knowledge in the automation field and provide valuable insights into the design,

implementation, and optimization of automation systems in different domains.

3. OBJECTIVES :

This work aims to provide the information to the Researcher to have the updated debugger to get better

protection for the system debugging. Here we give the block diagram, procedure, and ready-to-use code

to the Researcher so they can use it instantly in their research. We demonstrate the drawbacks of the

technologies they are using now and provide if they update the modified system. Sometimes damages

happen due to short circuits with high voltage. We can eliminate using this modified process.

4. APPROACH AND METHODOLOGY :

http://www.srinivaspublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 308

Fig. 1: Block diagram of the research work [Source: Author’s]

Figure 1 depicts the block diagram of our research work. We will see what exactly is happening inside

the block diagram.

(1) Controller: On the left side, there is the Modbus data producer. The primary source of the data

is the physical device. It is a microcontroller device. Mainly it should be one UART port to

send and receive the data. The device must display an understandable message to make

debugging easy. Generally, the RS485 driver is not available inside the microcontroller. So we

need to connect externally with the serial port. With the drive, RXD, TXD, and RE-DE signals

are coupled between the controller and the driver.

(2) RS485 driver: the RS485 driver converts the signal from UART to differential pair voltage. It

has several advantages. It carries long distances, and it is noise immune also. In the industrial

environment, there are lots of noise. Through the noise, we need to flow the signal without

interruption. So it is the best way to pass the signal using different voltage pair. Other signal-

carrying variants are also available, like ethernet, fiber optic, etc., but the cheapest way over

long-distance channels is RS485. In the RS 485 bus, we can connect around 32 devices. In some

scenarios, we need to adjust the impedance matching, that is, signal pair balancing using two

resistors (like 120E) for better performance.

(3) Data Consumer/client: The Modbus client receives the data and responds to the master. The

master initiates all communication. Master sends the command and response back from the

specific client which is addressed for. For broadcast messages, no clients are answered. When

the master wants to send the display message, it must send the data with the target address. The

broadcast address can be any address. The client firmware must be hardcoded for different

clients to assign the device Id.

(4) Isolation: Here, The A and B signals are fed to the isolated RS485 chip. It isolates from high

voltage spikes, so our connected system, like a laptop, does not affect any unwanted spikes.

After that, we use RS485 to UART converter chip. The popular and reliable chip is FT232RL.

This chip acts on two things. One converts RS485 to UART and the next convert UART to

USB. This chip manages all USB enumeration and communication states. When we connect to

the system, the operating system (OS) exchange a couple of USB token. The token is nothing

but data with a specific standard format. The OS creates a COM port like COM5 or COM3.

(5) Application(C#): Now, applications like C# open the port first using the assigned COM port

number. Once it is successfully opened, it can send and receive the data. The application is

based on the graphical user interface (GUI). We have taken a list box to view the message and

a couple of buttons to control the port, like connect/disconnect Button. When the COM object

http://www.srinivaspublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 309

receives a message, it is received by an interrupt vector and sets the received flag. The main

application runs a timer with a one-millisecond interval. It continuously checks whether the

data is present or not. Once data is obtained, it starts to parse. If the client iD matches, extract

the data and push the data to the Listbox.

Fig. 2: Embedded Side Code: message function [Source: Author’s]

(6) Firmware: Figure 2 depicts the sample code for Modbus multiple registers write, which

function code is 16 in decimal and 0x10 in hex. It is a simplistic approach. It can be a more

complex structure. It uses to send our debug message to the remote client; in our code, where

we need to view some message, we call the “msg” function and pass the message as an

argument. Figure 3 shows the example of a Modbus write multiple register function. According

to Modbus standards, there are some data formats to maintain the standard Modbus protocol.

After receiving the message, this function creates the Modbus packet. We make a temporary

register array called “temp” and form the packet inside. The first byte is the device id to whom

the data will receive. If it is for all, we need to set the broadcast address. Else, set the unicast or

the specific client id. The next one is function code 16 in decimal or 0x10 in hex. The next two

registers are the first address from which data will start writing.

(7) Address: We deal with 16-bit addresses, so we must split into the high and the low. The next

parts are 16-bit data. Inherently Modbus is a 16-bit register format. It is popular. So the

following two registers split into high and low bytes for the quantity of the int16 register. The

next position is the 6th, the number of bytes we send. Next, we insert the data we want to

transmit: the payload. It will be displayed on the other end. After the data fillup, calculate the

checksum, split it into two bytes, and insert it at the last position of the array. Once packet

formation is complete, it sends through the UART engine.

http://www.srinivaspublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 310

Fig. 3: Embedded Side Code: Modbus multiple register write function [Source: Author’s]

5. EXPERIMENT :

Now we can do some experiments to see what is happening. We follow the below steps:

Fig. 4: TTL To RS485 Module [Source: https://www.amazon.in]

(1) We need two types of modules. One is TTL to RS485 module depicted in Figure 4. It will enable

our microcontroller device into RS485. The module is available online:-

https://www.amazon.in/Converter-Adapter-Raspberry-Integrated-

Circuits/dp/B08243L4VX/ref=sr_1_3?crid=2S39UXX86AK3A&keywords=rs485+module&qid=

1688284413&sprefix=rs485+modul%2Caps%2C261&sr=8-3

http://www.srinivaspublication.com/
https://www.amazon.in/
https://www.amazon.in/Converter-Adapter-Raspberry-Integrated-Circuits/dp/B08243L4VX/ref=sr_1_3?crid=2S39UXX86AK3A&keywords=rs485+module&qid=1688284413&sprefix=rs485+modul%2Caps%2C261&sr=8-3
https://www.amazon.in/Converter-Adapter-Raspberry-Integrated-Circuits/dp/B08243L4VX/ref=sr_1_3?crid=2S39UXX86AK3A&keywords=rs485+module&qid=1688284413&sprefix=rs485+modul%2Caps%2C261&sr=8-3
https://www.amazon.in/Converter-Adapter-Raspberry-Integrated-Circuits/dp/B08243L4VX/ref=sr_1_3?crid=2S39UXX86AK3A&keywords=rs485+module&qid=1688284413&sprefix=rs485+modul%2Caps%2C261&sr=8-3

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 311

Fig. 5: USB to RS232 / RS485 / TTL Industrial Isolated Converter [Source: https://robu.in/]

(2) The other module is USB to the RSR85, depicted in Figure 5 it is available online

https://robu.in/product/waveshare-usb-to-rs232-rs485-ttl-industrial-isolated-converter/

(3) Take two modules. Take two wires. Connect one module's A with another module’s A—one

Module’s B with another module’s B.

(4) Connect the USB to the working system using a USB cable.

(5) Take the TTL-RS485 module. The module’s RX pin will connect with the controller TX, and the

module’s TX will connect with the controller RX pin. Make RE and DE pin short and connect with

one controller-free GPIO. In the program, we must change the state when we receive or transmit

the signal. Check the chip datasheet https://www.analog.com/media/en/technical-

documentation/data-sheets/MAX1487-MAX491.pdf. Now our hardware is ready to test. Let us do

some software work.

(6) Inside the existing firmware, we need to add the function “write multiple holding registers” like

Figure 3 and call the function like Figure 2. the embedded code is available in the project download

folder. The provided code is for the C2000 controller. It may change for other controllers, but the

concept is the same.

(7) For Modbus protocol details, https://www.modbustools.com/modbus.html#lrc and

https://camatsystem.com/wp-content/uploads/2015/12/Modbus-manual-TD80.pdf

(8) Build and upload the firmware. Our firmware is ready now. Let us make ready the PC application.

(9) Download and install visual studio from the Microsoft website.

(10) Download the project from the repository. https://github.com/sudipchakraborty/Industrial-

Automation-Debug-Message-Display-Over-Modbus-Using-C-sharp-And-CoppeliaSim-.git

(11) Under the C# folder, open the “Modbus_Debug_Terminal.sln” solution file. It will open the

project. Build and run the project.

(12) Connect converter module. The OS will assign a port like “COM1” or others. These port numbers

need to add apps PORT text box.

(13) Now press connect Button. If the connection is okay, the button color turns green.

(14) Now run the firmware. We will see the message is displaying. If it does not happen as described,

be patient and debug one by one according to the process flow.

Now we see various control on the GUI depicted in Figure 6.

(1) Message: under this group box, the incoming message is displayed.

(2) Receive count: A textbox on the top right displays the packet receipt count. When new receive

count will added. It will show the total number of valid received data counts.

(3) PORT: The PORT textbox is the assigned COM port of the operating system after connecting the

USB-RS485 module. It will assign automatically. For the Windows system, On the start menu,

click “Device Manager.” Under the port, the port number is available. It needs to be input into the

application port textbox.

(4) Baud Rate: It is the speed of communication. By default, the port speed is 9600. According to the

application, we can change the baud rate. The industrial standard baud rate is 9600, and 11.5 KBPS

is also acceptable for communication,

(5) Connect/Disconnect Button: the next Button is “connect,” which is used to communicate with

the device. Pressing the Button opens a COM port and is ready to communicate with that device.

http://www.srinivaspublication.com/
https://robu.in/
https://robu.in/product/waveshare-usb-to-rs232-rs485-ttl-industrial-isolated-converter/
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX1487-MAX491.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX1487-MAX491.pdf
https://www.modbustools.com/modbus.html#lrc
https://camatsystem.com/wp-content/uploads/2015/12/Modbus-manual-TD80.pdf
https://github.com/sudipchakraborty/Industrial-Automation-Debug-Message-Display-Over-Modbus-Using-C-sharp-And-CoppeliaSim-.git
https://github.com/sudipchakraborty/Industrial-Automation-Debug-Message-Display-Over-Modbus-Using-C-sharp-And-CoppeliaSim-.git

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 312

The next Button is the “disconnect” Button. This Button is used to disconnect with the system;

actually, it will disconnect that COM port.

(6) Device ID: This is the field of the Modbus device ID. By default, we set 200. It can be changed

anytime. Set this ID before sending any command to the target devices.

(7) Top checkbox: This checkbox displays the incoming message at the top. The info display can be

at the top and maybe at the bottom. If we check on top, it will always be the incoming message on

the top, and uncheck, keep the incoming message at the bottom.

(8) “do not repeat the same message”: sometimes, we need to see the same message repeatedly. For

that, Uncheck it. If checked, the repetitive message is displayed in a single line with the number of

repetitions.

(9) Start/Stop reading the Button: This Button is used to start the timer when we want to read. When

we start that application, the reading start is on by default. If we want to stop reading, press “Stop

reading” Button. The stop reading Button is used to stop that timer. One timer is always running

to read the data at every millisecond. It will check whether there is any incoming message and if

the incoming messages are available. It will display in that message box.

(10) Search textbox: It is used to search content from the listed data. Sometimes we need some data

which is already received. Type any text containing a number or value inside the textbox and enter.

It will stop the display and start searching from the entire row. If found, the row will be highlighted.

(11) Do not process CRC: sometimes, processing the CRC of an incoming packet takes time to display

the message. We can skip CRC processing by unchecking it. But it has an advantage—unwanted

or partially unhealthy data is not shown, leading to confusion.

Fig. 6: Application Interface [Source: Author’s]

6. RECOMMENDATIONS :

 The complete project work is written in a simplistic approach to understanding better.

 Experience researchers can also add various helpful functionality.

 The Researcher can implement an efficient search method.

7. CONCLUSION :

Through this research, we learn how to create a debug message display using Modbus. The are various

debus message display procedures are available. Among them, it is less complex and has several

advantages. The researchers can implement this into their projects to speed up their experiments using

this display procedure.

REFERENCES :

[1] Bingol, O., Tasdelen, K., Keskin, Z., & Kocaturk, Y. E. (2014). Web-based intelligent home

automation: PLC-controlled implementation. Acta Polytechnica Hungarica, 11(3), 51-63. Google

Scholar

http://www.srinivaspublication.com/
http://uni-obuda.hu/journal/Bingol_Tasdelen_Keskin_Kocaturk_49.pdf
http://uni-obuda.hu/journal/Bingol_Tasdelen_Keskin_Kocaturk_49.pdf

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 2, June 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 313

[2] Yunzhou, Z., & Chengdong, W. (2011, May). Design of a training and experimental platform based

on multi-protocol communication. In 2011 International Conference on E-Business and E-

Government (ICEE) (pp. 1-4). IEEE. Google Scholar

[3] Bajer, M. (2014). Dataflow in modern industrial automation systems. Theory and practice. Int. J.

Appl. Control Electr. Electron. Eng, 2(4). 01-11. Google Scholar

[4] Pfrang, S., Meier, D., Friedrich, M., & Beyerer, J. (2018). Advancing Protocol Fuzzing for Industrial

Automation and Control Systems. In ICISSP (pp. 570-580). Google Scholar

[5] Wang, H., Lu, J., Li, W., & Jiang, Z. (2017, June). Development of a three-dimensional virtual PLC

experiment model based on Unity3D. In 2017 First International Conference on Electronics

Instrumentation & Information Systems (EIIS) (pp. 1-4). IEEE. Google Scholar

[6] Familiar, B., Barnes, J., Familiar, B., & Barnes, J. (2017). Sensors, Devices, and Gateways. Business

in Real-Time Using Azure IoT and Cortana Intelligence Suite: Driving Your Digital

Transformation, 127-168. Google Scholar

[7] Mathas, C. M., Vassilakis, C., Kolokotronis, N., Zarakovitis, C. C., & Kourtis, M. A. (2021). On

the design of IoT security: Analysis of software vulnerabilities for smart grids. Energies, 14(10),

2818. Google Scholar

[8] Del Carmen Curras-Francos, M., Diz-Bugarín, J., García-Vila, J. R., & Orte-Caballero, A. (2014).

Cooperative development of an Arduino-compatible building automation system for practical

electronics teaching. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 9(3), 91-97.

Google Scholar

[9] Müller, M., Götting, M., Peetz, T., Vahs, M., & Wings, E. (2019, July). An Intelligent Assistance

System for Controlling Wind-Assisted Ship Propulsion Systems. In 2019 IEEE 17th International

Conference on Industrial Informatics (INDIN) (Vol. 1, pp. 795-802). IEEE. Google Scholar

[10] Aguilar, R. P., & Moreno, A. P. (2021). Design of a general-purpose automation software based

on Raspberry Pi. International Journal of Embedded Systems, 14(6), 563-577. Google Scholar

http://www.srinivaspublication.com/
https://www.researchgate.net/publication/252009365_Design_of_a_trainning_and_experimental_platform_based_on_multi-protocol_communication
https://www.researchgate.net/publication/320187633_Dataflow_in_Modern_Industrial_Automation_Systems_Theory_and_Practice
https://www.scitepress.org/papers/2018/67553/67553.pdf
https://www.researchgate.net/publication/323352394_Development_of_three_dimensional_virtual_PLC_experiment_model_based_on_Unity3D
https://www.oreilly.com/library/view/business-in-real-time/9781484226506/A436856_1_En_4_Chapter.html
https://www.mdpi.com/1996-1073/14/10/2818
https://www.researchgate.net/publication/265555676_Cooperative_Development_of_an_Arduino-Compatible_Building_Automation_System_for_the_Practical_Teaching_of_Electronics
https://ieeexplore.ieee.org/abstract/document/8972271
https://www.inderscienceonline.com/doi/abs/10.1504/IJES.2021.121089

