
International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 1

MVVM Demonstration Using C# WPF

Sudip Chakraborty 1 & P. S. Aithal 2
1 D.Sc. Researcher, Institute of Computer Science and Information sciences, Srinivas

University, Mangalore-575 001, India,

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2 Vice Chancellor, Srinivas University, Mangalore, India,

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

Subject Area: Computer Science.

Type of the Paper: Experimental Research.

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed In: OpenAIRE.

DOI: https://doi.org/10.5281/zenodo.7538711

Google Scholar Citation: IJAEML

International Journal of Applied Engineering and Management Letters (IJAEML)

A Refereed International Journal of Srinivas University, India.

Crossref DOI: https://doi.org/10.47992/IJAEML.2581.7000.0163

Received on: 12/12/2022

Published on: 14/01/2023

© With Authors.

This work is licensed under a Creative Commons Attribution-Non-Commercial 4.0

International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by the Srinivas Publications

(S.P.), India are the views and opinions of their respective authors and are not the views or

opinions of the S.P. The S.P. disclaims of any harm or loss caused due to the published content

to any party.

How to Cite this Paper:

Chakraborty, S., & Aithal, P. S., (2023). MVVM Demonstration Using C# WPF.

International Journal of Applied Engineering and Management Letters (IJAEML), 7(1), 1-

14. DOI: https://doi.org/10.5281/zenodo.7538711

mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com
https://doi.org/10.5281/zenodo.7538711
https://scholar.google.com/citations?user=Wb7oZPYAAAAJ
https://search.crossref.org/?q=10.47992%2FIJAEML.2581.7000.0163&from_ui=yes
https://doi.org/10.5281/zenodo.7538711

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 2

MVVM Demonstration Using C# WPF

Sudip Chakraborty 1 & P. S. Aithal 2
1 D.Sc. Researcher, Institute of Computer Science and Information sciences, Srinivas

University, Mangalore-575 001, India,

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2 Vice Chancellor, Srinivas University, Mangalore, India,

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

ABSTRACT

Purpose: Nowadays, MVVM (Model-View View-Model) is the proven architecture for

distributed software development. It encourages the development of the software components

by the different independent teams and easy integration at the final stage. The individual

researcher prefers direct coding or tightly coupled software modules. The Model is rapid and

efficient but might create maintainability issues later. So from day one, we should introduce

the best design model. In this scenario, the MVVM model is the major player. Here, we

present how to implement MVVM into our project through a simple task. We will design the

user interface, which is part of the UX design team, and then add functionality, which is the

programming part. Finally, we will do integration and execution. The code used in this project

is available to download from GitHub.

Design/Methodology/Approach: We are creating a C# WPF project inside the visual studio

community edition. Then we segregate our activity into two parts. In the first part, we make

a Model for our project. After that, we design the user interface. The user interface interacts

with the user to display the data and receive inputs from the user. It is the presentation or view

layer. After completing it, we add the required view model interaction logic. Finally, we

integrate all components and run the project.

Findings/Result: Through the research, we realize the importance of the MVVM concept. It

is a good software architecture; the researcher who has gone through the documents will find

out how to implement the MVVM into their project. Some essential procedures are presented

concisely so they can be adopted quickly. This architecture is independent of any language.

So once we grab it, it can be implemented in our project, whatever the language we use.

Originality/Value: Several documents on MVVM design using WPF are available

worldwide. Most of the documents are elaborative and descriptive. It is tricky to extract the

required information from long-duration content as fast-track space. Here we demonstrate

practically. Using the documents as a reference, the researcher can easily integrate the MVVM

concept into their project.

Paper Type: Experimental-based Research.

Keywords: MVVM concept, MVVM design, Model View Model Design, MVVM in C#

WPF.

1. INTRODUCTION :

Day by day, we are surrounded by more and more electronic gadgets. The gadget's behaviour is also

becoming more complex. A few years ago, we developed the software, and it would run year after

year without an issue, and no change requirement was there. Now the scenario has changed. That

robust software we built just a few months back is outdated for various reasons.

(1) We are now operating the application from various devices like desktops, laptops, tablets, Mobile

phones, etc. They are all different screen resolutions. The application's target screen resolution is

dynamic. So we need to develop our apps with auto-adjustable resolution features.

(2) The market is more competitive, and the cost of production is generally so high, so we need cheap

and the best solution in every aspect.

(3) We increasingly understand the user and user usage patterns and update our apps, and we want to

stay away from the competition.

mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 3

(4) The development time of the projects is too short now. Sometimes we must launch a new software

product in a couple of weeks.

(5) The marketing philosophy has drastically changed. Instead of a static image, one short-duration

video or animated movie is preferable for the user to understand the content. The device computation

power is also increasing, so we must deliver dynamic content instead of static content.

(6) The simple windows form with a 3D effect border or background is more resource consumable.

Instead, flat architecture with high responsiveness is effective and widely acceptable. So, software

technologies have changed their strategy to the need. Now MVVM technology has come. MVVM

stands for model view model architecture. It provides loose binding among various software

components. So that one wrong implementation does not adversely affect the entire software stack.

That is why this architecture is so popular. The Model means the Model of the software product, and

the view is the display item of the content to the user. We distribute our assigned projects to specialized

teams and build high-quality software with a competitive advantage.

So the advantage of the MVVM architecture are:-
 It is a rapid prototyping model

 Distributed development architecture

 Loosely coupled among modules

 Better maintainability.

 Easy to debug

2. RELATED WORKS :

Pan, H. H et al. design their GUI interface architecture using MVVM in WPF. Their GUIAC has a

loosely coupled structure with three layers, so implementation works parallel to improve development

and maintenance efficiency [1]. Sorensen E et al. worked on education systems that are beginning to

adapt and transform the electronic versions, marking the transition from the traditional to the digital

Age [2]. Gross, I. V. et al. developed their application using .Net WPF user control and 3D picture

box control for facilitating 3D image reconstruction [3]. Sulistyarini, D et al. design them using WPF

for flexibility of different screen resolutions. They use SQL servers for data storage, and the result

shows inside the WPF control [4]. Troelsen, A. et al. in their book dedicated a particular chapter to the

investigation of the WPF programming model by covering the capabilities that support the Model-

View-ViewModel (MVVM) pattern, which improves the user experience significantly and reduces

the manual coding required in older technologies [5].

3. OBJECTIVES :

MVVM is an excellent architectural concept in the software design principle. It makes software

projects easy to build and maintain. The primary objective is to introduce our researchers doing

software projects using C# WPF. And also, the aim is to provide some good references or handy

documents for the researcher to integrate MVVM into their project.

Figure 1 depicts the architecture of our project. When we developed our project using MVVM

architecture, we divided our task into several teams. We can determine how to build our

project using two teams' work. More division may be possible when a specialized workforce

is available. The core function is two. The UX interface and programming task. Here we are

describing how to execute our job step by step:

(1) We create a C# WPF Application in Microsoft visual studio community edition 2022. If

we build and run the apps, blank windows will appear.

(2) Model: Create a folder Model and add the class Employee.cs and EmployeeService.cs.

Inside the Employee.cs create variables with properties get/set. This is the data storage place.

We save and retrieve the data from here. Inside the EmployeeService.cs, we add functionality

to the operation on model data. It is the collection of methods to work on model data—task

number 1 and 2 on the right side of figure 1.

(3) View: The project requirement generated by the client or from the administration. The

technical writer creates software requirement specifications (SRS). The UX team creates

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 4

layouts using tools like Figma apps. In figure 4.1, the left side 1 and 2 task indicates the

scenario. Then GUI team develops the front end. Here we Create a folder called “View” and

add a user control. Name “EmployeeView.XAML”. According to our requirement, we add

several controls like text boxes, buttons, sliders, combo boxes, etc. After the GUI design, we

bind the UI element with methods and variables. It bridges two sides of the project design

and programming. The methods we write inside the EmployeeViewModel.cs class depicts task

4 of the figure.

4. APPROACH AND METHODOLOGY :

Fig. 1: Project Block Diagram

(4) Commands: This is used to relay the commands to the specific methods from the user

interface events. It also helps to eliminate hard binding between UI and associated procedures.

create a folder called “Command.” Add a class RelayCommand.cs. Add methods to relay. We

can see task 3 In figure 1.
(5) ViewModel: This part is the central part of the complete architecture. It coordinates among all

components of the application. Here we Create a folder named “ViewModel,” and inside it, we create

a class “EmployeeViewModel.cs”. When this class instantiates, it establishes several objects. One

temporary object class that stores currently edited data are responsible for sending as a method

parameter to methods like create, delete, etc. Next, develop functions that will be relayed to the

specific techniques. And with this class, we establish several modules to support itself, like

communication, database, etc., to provide the error-free content flow among modules which depicts

task 5 of figure 1.

(6) App Entry Point: After all module development, one little bit of pending task is still to execute

the application. We need to connect the Main windows with the coordinate class. In figure 1, task 6

needs to do. We initiate the class here so that it can navigate the entire application.

5. EXPERIMENT :

Now we will experiment with MVVM architecture, following the below steps. Here, we can type or

copy the entire class from the downloaded project folder from GitHub to create any class.

Project creation: Create a repository in GitHub and Clone it. Open visual studio. Create a new C#

WPF project and name it “MVVM_Demo.” Build the project and run. It will show blank windows

with white background.

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 5

Model Creation: Inside the project, create a folder named “Model.” Inside the model folder, create

two classes, “Employee. cs” and “EmployeeService.cs” write the code as depicted in figure 2 or copy-

paste. Build the project. It should be a success.

Fig. 2: Example code for Employee.cs

Description: This is the primary or base class. The variable we work on within a project will be

assigned or created here. Every variable is accessed through its property. When we create a variable,

we also make its property so that we can save or retrieve it to and from the variable. Two things are

essential here. One is a variable assignment, and another is an INotifyPropertyChanged assignment.

This is one of the essential things for MVVM architecture. When the user changes the textbox

content, the function will be called automatically and set property, save the value to the associated

variable. If the control is two-way binding, it is held and loaded from this variable. We need to include

“using System.ComponentModel” for it. We declare one event handler

PropertyChangedEventHandler. When any one of the variable properties changes, it will interrupt,

and the OnPropertyChanged method will be called. It is the standard function for all variables. When

it is called, it will take the selected property and set or get the value from the variable.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace MVVM_Demo.Model

{

 public class Employee : INotifyPropertyChanged

 {

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)

 {

 if (PropertyChanged !=null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 private int id;

 public int Id

 {

 get {return id;}

 set{id=value;OnPropertyChanged("Id");}

 }

 private String name;

 public string Name

 {

 get { return name;}

 set { name=value; OnPropertyChanged("Name");}

 }

 private int age;

 public int Age

 {

 get{return age;}

 set{age=value;OnPropertyChanged("Age");}

 }

 }// class

}

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 6

Fig. 3: Example code for EmployeeService.cs

Here we created three variables, id, name, and Age, to store the data. Three text boxes are available in

the view module, which will be displayed to the user. These three textboxes are bonded with these

variables. When some change occurs, the event is fired, and the value is set or gets to and from the

variable.

Now we will write the “EmployeeService.cs” class. We can write the code depicted in figure 5.2 or

copy from the figure and paste the code inside the class.

Description: first, we create a list object of our base class, the Employee class. The GetAll function

get all Employee as a list to the caller. The add function adds the new Employee. Before adding the

Employee, we can check various criteria like age validation. If all requirements are valid, one new

Employee will be added to the employee list object. The next one is Update methods. This method is

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace MVVM_Demo.Model

{

 public class EmployeeService

 {

 private static List<Employee> objEmployeesList;

 public EmployeeService()

 {

 objEmployeesList=new List<Employee>();

 }

 //__

 public List<Employee> GetAll()

 {

 return objEmployeesList;

 }

 //__

 public bool Add(Employee objNewEmployee)

 {

 // Age must between 21 and 58

 if (objNewEmployee.Age<21 || objNewEmployee.Age>58)

 throw new ArgumentException("Invalid age limit for employee");

objEmployeesList.Add(objNewEmployee);

 return true;

 }

 //__

 public bool Update(Employee objEmployeeToUpdate)

 {

 bool IsUpdate = false;

 for (int index = 0; index<objEmployeesList.Count; index++)

 {

 if (objEmployeesList[index].Id==objEmployeeToUpdate.Id)

 {

 objEmployeesList[index].Name=objEmployeeToUpdate.Name;

 objEmployeesList[index].Age=objEmployeeToUpdate.Age;

 IsUpdate=true;

 break;

 }

 }

 return IsUpdate;

 }

 //__

 public bool Delete(int id)

 {

 bool IsDeleted = false;

 for (int index = 0; index<objEmployeesList.Count; index++)

 {

 if (objEmployeesList[index].Id==id)

 {

 try

 {

 objEmployeesList.RemoveAt(index);

 IsDeleted = true;

 }

 catch (Exception)

 {

 } } }

 return IsDeleted;

 }

 //___

 public Employee Search(int id)

 {

 return objEmployeesList.FirstOrDefault(e => e.Id==id);

 }

 //___

 }

 }

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 7

used to update or modify any information. We are passing the modified employee details. If the ID

is matched, the Employee is updated. The Delete function is used to delete any records from our

collection. Before deleting any form, we should check the ID of the Employee. And the last one is

search methods. This method searches for Employee from the object collection. In a real-life project,

we add more variables here.

Fig. 4: Example code for RelayCommand.cs

Relay Command: Inside the project folder, create a folder called “Command.” create a class called

“RelayCommand.cs”. Add some methods as depicted in figure 4. We can type or copy/paste using

text selection. This command relay isolates the user interface among different modules.

Description: This class is implemented targeting isolation. When users press some control like a

button or any other command input, the program pointer reaches here and then relays to the particular

command. It acts as the bridge between the module. The modules are developed individually and

connected virtually. It helps us to bind the modules loosely. If we write a direct function, that also

works, but if some changes occur, both modules are affected. Here the ICommand is a runtime

binding element, and the direct coding compiles time binding.

ViewModel Design: we create a folder called “ViewModel.” Inside the folder, create a class

“EmployeeViewModel.cs”. We can copy the code or direct copy and paste it into the class.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Input;

namespace MVVM_Demo.Command

{

 public class RelayCommand:ICommand

 {

 public event EventHandler CanExecuteChanged;

 public Action DoWork;

 public RelayCommand(Action work)

 {

 DoWork= work;

 }

 public bool CanExecute(object parameter)

 {

 return true;

 }

 public void Execute(object parameter)

 {

 DoWork();

 }

 }

}

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 8

Fig. 5 (a): Example code for EmployeeViewModel.cs

using MVVM_Demo.Command;

using MVVM_Demo.Model;

using System;

using System.Collections.Generic;

using System.Collections.ObjectModel;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace MVVM_Demo.ViewModel

{

 public class EmployeeViewModel : INotifyPropertyChanged

 {

 #region Inotify change

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)

 {

 if (PropertyChanged !=null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 #endregion

 EmployeeService objEmployeeService;

 public EmployeeViewModel()

 {

 objEmployeeService= new EmployeeService();

 LoadData();

 CurrentEmployee =new Employee();

 SaveCommand=new RelayCommand(Save);

 searchCommand=new RelayCommand(Search);

 updateCommand=new RelayCommand(Update);

 deleteCommand=new RelayCommand(Delete);

 }

 #region Display Operation

 private ObservableCollection<Employee> employeesList;

 public ObservableCollection<Employee> EmployeesList

 {

 get {return employeesList;}

 set{employeesList = value; OnPropertyChanged("EmployeesList");}

 }

 private void LoadData()

 {

 EmployeesList=new ObservableCollection<Employee>(objEmployeeService.GetAll());

 }

 #endregion

 private Employee currentEmployee;

 public Employee CurrentEmployee

 {

 get {return currentEmployee;}

 set{ currentEmployee=value;OnPropertyChanged("CurrentEmployee");}

 }

 private string message;

 public string Message

 {

 get{return message;}

 set{message=value; OnPropertyChanged("Message");}

 }

 #region SaveOperation

 private RelayCommand saveCommand;

 public RelayCommand SaveCommand

 {

 get{ return saveCommand;}

 set{saveCommand = value;}

 }

 public void Save()

 {

 try

 {

 Employee emp = new Employee();

 emp.Id=CurrentEmployee.Id;

 emp.Name=CurrentEmployee.Name;

 emp.Age=CurrentEmployee.Age;

 var IsSaved = objEmployeeService.Add(emp);

 LoadData();

 if (IsSaved) Message="Employee Saved";

 else

 Message="Save Operation Failed";

 }

 catch (Exception ex)

 {

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 9

Fig. 5(b): Example code for EmployeeViewModel.cs (continue..)

 Message=ex.Message;

 }

 }

 #endregion

 #region SearchOperation

 private RelayCommand searchCommand;

 public RelayCommand SearchCommand

 {

 get

 {

 return searchCommand;

 }

 set

 {

 searchCommand = value;

 }

 }

 public void Search()

 {

 try

 {

 var ObjEmployee = objEmployeeService.Search(CurrentEmployee.Id);

 if (ObjEmployee!= null)

 {

 CurrentEmployee.Name= ObjEmployee.Name;

 CurrentEmployee.Age= ObjEmployee.Age;

 }

 else

 {

 Message="Employee Not found";

 }

 }

 catch (Exception ex)

 {

 throw;

 }

 }

 #endregion

 #region UpdateOperation

 private RelayCommand updateCommand;

 public RelayCommand UpdateCommand

 {

 get

 {

 return updateCommand;

 }

 }

 public void Update()

 {

 try

 {

 var IsUpdated = objEmployeeService.Update(CurrentEmployee);

 if (IsUpdated)

 {

 Message="Employee Updated";

 LoadData();

 }

 else

 {

 Message="Update Operation Failed";

 }

 }

 catch (Exception ex)

 {

 Message=ex.Message;

 }

 }

 #endregion

 #region DeleteOperation

 private RelayCommand deleteCommand;

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 10

Fig. 5(c): Example code for EmployeeViewModel.cs (continue..)

Fig. 6: Example code for EmployeeView. XAML

 public RelayCommand DeleteCommand

 {

 get

 {

 return deleteCommand;

 }

 }

 public void Delete()

 {

 try

 {

 var IsDelete = objEmployeeService.Delete(CurrentEmployee.Id);

 if (IsDelete)

 {

 Message="Employee deleted";

 LoadData();

 }

 else

 {

 Message="Delete Operation Failed";

 }

 }

 catch (Exception ex)

 {

 Message=ex.Message;

 }

 }

 #endregion

 }

}

<UserControl x:Class="MVVM_Demo.View.EmployeeView"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:local="clr-namespace:MVVM_Demo.View"

 xmlns:viewmodels="WpfApp1.ViewModel"

 xmlns:viewmodel="clr-namespace:MVVM_Demo.ViewModel"

 d:DataContext="{d:DesignInstance Type=viewmodel:EmployeeViewModel}"

 mc:Ignorable="d"

 d:DesignHeight="600" d:DesignWidth="800">

 <Grid Margin="15" >

 <Grid.ColumnDefinitions >

 <ColumnDefinition Width="23.582" />

 <ColumnDefinition Width="38.778"/>

 <ColumnDefinition Width="26*" />

 <ColumnDefinition Width="323*"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="96*" />

 <RowDefinition Height="96*" />

 <RowDefinition Height="96*" />

 <RowDefinition Height="96*" />

 <RowDefinition Height="96*" />

 <RowDefinition Height="90*" />

 <RowDefinition Height="101*" />

 </Grid.RowDefinitions>

 <TextBlock Text="Employee Management"

 Grid.Row="0"

 Grid.Column="3"

 FontSize="20"

 FontWeight="Bold"

 HorizontalAlignment="Left" Margin="155,0,0,53" Grid.RowSpan="2" Width="222"

 />

 <TextBlock Text="Enter Id"

 Grid.Column="0" Grid.ColumnSpan="2" Margin="0,68,0,96" Grid.RowSpan="2" />

 <TextBlock Text="Enter Name"

 Grid.Row="1"

 Grid.Column="0" Grid.ColumnSpan="2" Margin="0,15,0,53" />

 <TextBlock Text="Enter Age"

 Grid.Row="1"

 Grid.Column="0" Grid.ColumnSpan="2" Margin="0,63,0,96" Grid.RowSpan="2" />

 <TextBox Name="txtId"

 Grid.Column="2" Grid.ColumnSpan="2" Margin="10,68,438,96"

 Text="{Binding Path=CurrentEmployee.Id,Mode=TwoWay}" Grid.RowSpan="2"

 />

 <TextBox Name="txtName"

 Grid.Row="1"

 Grid.Column="2" Grid.ColumnSpan="2" Margin="11,10,437,53"

 Text="{Binding Path=CurrentEmployee.Name,Mode=TwoWay}"

 />

 <TextBox Name="txtAge"

 Grid.Row="1"

 Grid.Column="2" Grid.ColumnSpan="2" Margin="11,56,438,96"

 Text="{Binding Path=CurrentEmployee.Age,Mode=TwoWay}" Grid.RowSpan="2"

 />

 <StackPanel Orientation="Horizontal"

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 11

Fig. 7: Example code for EmployeeView. XAML

Description: Here, it bridges between view and model class. For example, we added only one

ViewModel type. In an actual project, there are several classes inside the project folder. Couples of

objects are created when it is instantiated. One is the EmployeeService object. It is responsible for

operations like add, delete, search, etc. It also initiates a current employee class. It is used to save the

data whenever the user input into the Inputbox. It is also used to pass the current employee object as

a parameter to the methods. The relay commands like SaveCommand, search command, and update

and delete command also initiate here. When the user presses the button inside the GUI, the program

pointer will go to the RelayCommand object and then navigate here. It calls the ObjEmployee service

function to process the task. It is also coordinated among various component modules. The

EmployeeViewModel.cs is depicted in figures 5(a) to 5(c).

 Grid.Row="2"

 Grid.Column="2" Grid.ColumnSpan="2" Margin="5,9,-6,19">

 <Button Name="btnAdd"

 Content="ADD"

 Margin="5,8" Padding="3"

 Width="113" Height="50"

 Command="{Binding Path=SaveCommand}" RenderTransformOrigin="0.428,-0.45"

 />

 <Button Name="btnSearch"

 Content="SEARCH"

 Margin="5,8" Padding="3"

 Width="97" Height="50"

 Command="{Binding Path=SearchCommand}"

 />

 <Button Name="btnUpdate"

 Content="UPDATE"

 Margin="5,8" Padding="3"

 Width="108" Height="50"

 Command="{Binding Path=UpdateCommand}"

 />

 <Button x:Name="btnDelete"

 Content="DELETE"

 Padding="3"

 Width="80" Height="50"

 Command="{Binding DeleteCommand}" RenderTransformOrigin="0.458,0.547"

 />

 </StackPanel>

 <TextBlock Name="txtBlockMessage"

 Grid.Row="6" Grid.ColumnSpan="4" Margin="12,15,50,10"

 Text="{Binding Path=Message}"

 />

 <DataGrid Name="dgEmployees"

 AutoGenerateColumns="False"

 Grid.Row="3"

 Grid.Column="1" Margin="38,10,13,10" Padding="3,3,3,3"

 ItemsSource="{Binding Path=EmployeesList,Mode=TwoWay}"

 RenderTransformOrigin="0.503,1.137" Grid.ColumnSpan="3" Grid.RowSpan="3">

 <DataGrid.Columns>

 <DataGridTextColumn Header="Employee Id"

 Width="auto"

 Binding="{Binding Path=Id}"/>

 <DataGridTextColumn Header="Employee Name"

 Width="auto"

 Binding="{Binding Path=Name}"/>

 <DataGridTextColumn Header="Employee Age"

 Width="auto"

 Binding="{Binding Path=Age}"/>

 </DataGrid.Columns>

 </DataGrid>

 </Grid>

</UserControl>

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 12

Fig. 8: Example code for MainWindow. XAML

View Design: if we see the architecture of the MVVM according to the class dependency, The view

is the last element in the actual scenario. Different teams design the view part, not in model or view

model teams. It is the job of the UX design team. Inside the project folder, create a folder called

“View.” We add a user control, “EmployeeView.XAML”. Copy-paste the code from figures 6 and

figure 7. The view is where users input and display the data they need to see. If we observe, its text

is bound with a variable in the coordinator class EmployeeViewModel.cs.

Fig. 9: Example code for MainWindow

Final Work: Now, only one job is pending. The gateway of the application is MainWindows.

XAML. So we have to bind our view with these windows. Figure 8 depict the code which needs to

add to the MainWindows.Xaml. And in the MainWindow. XAML.cs class add code from figure 9.

Execute: Now, build the code. It should successfully build. If not, we need to debug. Press the run

button. The application Interface should look like 10. Now enter your id, name, and Age. Press add.

The Employee will add to this list. After adding a couple of Employees, if we press the delete button,

the Employee will delete where the id is in the id box. The search and update are self-explanatory.

The application interface and GUI are for demonstration purposes only. We need to design GUI as

per our requirement, but the procedure is the same as we described.

<Window x:Class="MVVM_Demo.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:local="clr-namespace:MVVM_Demo"

 mc:Ignorable="d"

 Title="MainWindow" Height="700"

 Width="800"

 xmlns:vw="clr-namespace:MVVM_Demo.View">

 <Grid>

 <vw:EmployeeView Margin="0,10,10,-31"/>

 </Grid>

</Window>

using MVVM_Demo.ViewModel;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;

using System.Windows.Navigation;

using System.Windows.Shapes;

namespace MVVM_Demo

{

 public partial class MainWindow : Window

 {

 EmployeeViewModel ViewModel;

 public MainWindow()

 {

 InitializeComponent();

 ViewModel=new EmployeeViewModel();

 this.DataContext=ViewModel;

 }

 }

}

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 13

Fig. 10: Application Interface

6. RECOMMENDATIONS :

 For project code: https://github.com/sudipchakraborty/MVVM-Demonstration-Using-C-

WPF.git

 We adopted the example code from:

https://www.youtube.com/watch?v=rSrc252Bf3Y&list=PLEGjYQQO3ST8hatajWNDUGV

wo437sPv8G&index=4

 SourceTree download link: https://www.sourcetreeapp.com/

 Good tutorial on C# MVVM:

https://www.youtube.com/watch?v=i_DlDYFR0Ag&list=PLEGjYQQO3ST8hatajWNDUG

Vwo437sPv8G&index=1

7. CONCLUSION :

Preferrable software architecture is MVVM when we consider designing our software across a

different team like UX design, programming, etc. It is loosely binding among various software

components. That is why final integration among them is an excellent task. It is also ideal when we

think about future maintainability. It is a language-independent architecture that can be applied to most

standard languages. Here using C# and WPF, we implemented this design concept. This work might

be a good reference for those trying hard to integrate this concept into their project.

REFERENCES :

[1] Pan, H. H., Jiang, J. J., Chen, L., Sun, H. T., & Tan, H. Q. (2011). A scalable graphical user

interfaces architecture for CNC application based-On WPF and MVVM. In Advanced Materials

Research (Vol. 317, pp. 1931-1935). Trans Tech Publications Ltd. Google Scholar

[2] Sorensen, E., & Mikailesc, M. (2010). Model-view-ViewModel (MVVM) design pattern using

Windows Presentation Foundation (WPF) technology. MegaByte Journal, 9(4), 1-19. Google

Scholar

https://github.com/sudipchakraborty/MVVM-Demonstration-Using-C-WPF.git
https://github.com/sudipchakraborty/MVVM-Demonstration-Using-C-WPF.git
https://www.youtube.com/watch?v=rSrc252Bf3Y&list=PLEGjYQQO3ST8hatajWNDUGVwo437sPv8G&index=4
https://www.youtube.com/watch?v=rSrc252Bf3Y&list=PLEGjYQQO3ST8hatajWNDUGVwo437sPv8G&index=4
https://www.sourcetreeapp.com/
https://www.youtube.com/watch?v=i_DlDYFR0Ag&list=PLEGjYQQO3ST8hatajWNDUGVwo437sPv8G&index=1
https://www.youtube.com/watch?v=i_DlDYFR0Ag&list=PLEGjYQQO3ST8hatajWNDUGVwo437sPv8G&index=1
https://www.scientific.net/AMR.317-319.1931
http://megabyte.utm.ro/articole/2010/info/sem1/InfoStraini_Pdf/1.pdf
http://megabyte.utm.ro/articole/2010/info/sem1/InfoStraini_Pdf/1.pdf

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 7, No. 1, January 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com PAGE 14

[3] Grossu, I. V., Opritescu, M., Savencu, O., Miron, A. I., Verga, M., & Verga, N. (2022). A new

version of Hyper-Fractal Analysis: Net WPF module for RGB 3D reconstruction of medical

three-channel images. Computer Physics Communications, 276, 108335. Google Scholar

[4] Sulistyarini, D. D., Isman, R. K., & Maulana, H. (2018). Build and Design of Voyage Account

Applications Using C#, WPF, and SQL Server 2012 (Case Study Company X). INKOM

Journal, 11(1), 25-32. Google Scholar

[5] Troelsen, A., & Japikse, P. (2017). WPF Notifications, Validations, Commands, and MVVM.

In Pro C# 7 (pp. 1137-1176). Apress, Berkeley, CA. Google Scholar

[6] James, B., & Lalonde, L. (2015). Pro XAML with C#: Application Development Strategies (covers

WPF, Windows 8.1, and Windows Phone 8.1). Apress. Google Scholar

[7] Sannarangaiah, K. (2020). Design and development of a graphical user interface with state-of-the-

art C# patterns. Google Scholar

[8] James, B., & Lalonde, L. (2015). What Is XAML? In Pro XAML with C# (pp. 3-13). Apress,

Berkeley, CA. Google Scholar

[9] Yuen, S. (2020). Mastering Windows Presentation Foundation: Build responsive UIs for desktop

applications with WPF. Packt Publishing Ltd. Google Scholar

[10] Sheikh, W., & Sheikh, N. (2020). Audiometry: A model-view-ViewModel (MVVM) application

framework for hearing impairment diagnosis. Journal of Open Source Software, 5(51), 2016, 1-

6. Google Scholar

https://www.sciencedirect.com/science/article/pii/S0010465522000534
https://jurnal.informatika.lipi.go.id/index.php/inkom/article/view/541
https://link.springer.com/chapter/10.1007/978-1-4842-3018-3_28
https://books.google.com/books?hl=en&lr=&id=3zYwCgAAQBAJ&oi=fnd&pg=PP3&dq=James,+B.,+%26+Lalonde,+L.+(2015).+Pro+XAML+with+C%23:+Application+Development+Strategies+(covers+WPF,+Windows+8.1,+and+Windows+Phone+8.1).+Apress&ots=UfGlwPZ5EJ&sig=m-nvYGF9kcQIs_vuHXmG8BQyqn0
https://www.politesi.polimi.it/handle/10589/170629
https://link.springer.com/chapter/10.1007/978-1-4302-6775-1_1
https://books.google.com/books?hl=en&lr=&id=Kg3aDwAAQBAJ&oi=fnd&pg=PP1&dq=Yuen,+S.+(2020).+Mastering+Windows+Presentation+Foundation:+Build+responsive+UIs+for+desktop+applications+with+WPF.+Packt+Publishing+Ltd.+&ots=u8_isDCbg5&sig=dvf6OKtIH6sC3t-khSjx9OLZVNk
https://joss.theoj.org/papers/10.21105/joss.02016.pdf

